自动汽车外部灯光控制系统
2019-11-22

自动汽车外部灯光控制系统

本发明涉及被配置用来区分高反射性表面的反射和所关心的大气状态的反射的汽车灯光控制系统(250)。

Description

自动汽车外部灯光控制系统相关申请的交叉参考根据美国法典第35巻119条(e)款(35U.S.C§119(e)),本申请要求2003年2月21日提交的美国临时专利申请60/448,793的优先权。该临时专利申请公开的内容在此引入作为参考。技术领域本发明整体上涉及一种汽车外部灯光控制系统。更具体地说,本发明涉及一种响应于特定大气状态的出现而对外部汽车灯光进行控制的系统。背景技术为了适应交通状态的改变,自动汽车外部灯光控制系统通过减轻方便。众所周知,司机一般不适合经常地使用高光度头灯。与低光度头灯相比,高光度头灯在夜间能提供2至4倍、或者更多倍的能见距离。因此,使受控汽车的司机在夜间能够比相反情况下更早地看到障碍物或行人。光度切换任务的自动化以及增加高光度头灯的使用可为夜间驾驶带来安全的好处。已知的被设计用于自动地控制汽车外部灯光的系统使用前视数字成像系统来获取一般位于受控汽车前面的现场的图像,然后分析这些图像并检测驶近的汽车和前面的汽车的尾灯。如果环境照明状态足够低,以至于允许使用高光度头灯,且没有检测到驶近的或前面的汽车,高光度头灯就自动开启。当检测到其它的交通工具位于一定范围内、并且其它交通工具的司机会遭受受控汽车的高光度头灯带来刺眼的强光时,该受控汽车的高光度头灯的亮度就自动减小,由操作或它们的组合来调整、抑制目标。附带地或者可选地,要控制高光度头灯,自动化的汽车外部控制系统可适用于控制多种照明技术,包括至少一个低光度头灯的亮度、至少一个低光度头灯的目标、弯曲照明、高速公路照明、市区照明、雾灯、尾灯或任何其它的汽车照明设备。应当理解,其中所公开的内容在下面特别提到了高光度头灯的控制、或者对自动化高光度头灯控制的抑制,这些方法还可应用于包括但并不局限于以上列出的多种外部照明技术。当即使没有驶近的或前面的汽车也不希望高光度头灯工作时,由于多种因素,已知系统在很多时候都存在一个问题。这种状况的例子包括浓雾、暴风雪等恶劣天气,或者是当受控汽车的高光度头灯的光从这里所考虑的大气状态反射回来并使受控汽车的司机分心时。某些大气状态还减弱了来自其它汽车的光线,从而使成像系统难以在足够的距离检测到其它车辆。另一种一般不希望使用高光度头灯的情况是在市区内驾驶时。在一些欧洲国家,高亮度头灯在市区内是禁止使用的,即使没有驶近的或前面的车辆。与使用成像系统自动控制汽车外部灯光相关的问题出现在相关的图像传感器的视野被物体或图像传感器前的污染物妨碍或阻隔时。优选地,该成像系统被集成到受控汽车的后视镜组件内,这样成像传感器安置在挡风玻璃的后面的一个区域内,在该区域内相应的挡风玻璃被擦拭干净。但是,即使在这种结构中,仍然存在水块或其它污染物不能被擦拭器清除,从而可能妨碍图像传感器。在这些情况下,图像传感器可能感知不到来自驶近的或前面的车辆的灯光,从而使该系统错误地断定不存在其它车辆,并启动高光度头灯,从而使其它车辆的司机遭受刺目的强光。这些情形要求受控汽车的司机干预并切断自动系统,这样可能不能满足自动化要求,并降低自动汽车外部灯光控制系统的可信度。因此,具有优点的是在自动检测自动高光度控制系统不能令人满意地工作的情况下进行自动检测,并且自动禁用该特性并恢复为自动故障防护的低光度状态。在这些情况下通常仍然提供手动控制以允许司机在自动系统不能工作时确定想要的外部灯光状态。这里需要的是提供用于检测相关工作环境的特性的改进的自动汽车外部灯光控制系统。还需要被配置为自动响应检测到的工作环境的系统。发明内容本发明提供了自动汽车外部灯光控制系统,它能够提供检测相关工作环境的改善的特性。还提供了被配置为自动响应检测到的工作环境的系统。在至少一个实施例中,自动汽车外部灯光控制系统具有改善的环境照明检测特性。在相关的实施例中,提供了响应于检测到的环境灯光自动控制各种汽车系统的系统。在至少一个实施例中,自动汽车外部灯光控制系统具有所关心的检测特性的改善的大气状态。在相关的实施例中,提供了响应于检测到的所关心的大气状态、自动控制各种汽车系统的系统。在至少一个实施例中,自动汽车外部灯光控制系统具有改善的成像器妨碍和/或故障成像器检测特性。在相关的实施例中,提供了响应于检测到的成像器妨碍和/或故障成像器自动控制各种汽车系统的系统。在至少一个实施例中,自动汽车外部灯光控制系统具有改善的"市区"运行检测特性。在相关的实施例中,提供了响应于检测到的市区运行自动控制各种汽车系统的系统。在至少一个实施例中,自动汽车外部灯光控制系统具有改善的行人和/或骑自行车者的检测特性。在相关的实施例中,提供了响应于检测到的行人和/骑自行车者自动控制各种汽车系统的系统。在至少一个实施例中,本发明的多种改进都与其它的汽车系统集成在一起。在至少一个相关的实施例中,所述的各种集成的系统被配置为共享改善其运行和/或降低相关成本的组件。参照附图、示例和所附的权利要求,通过阅读下面的具体描述,本发明的其它优点将更为清楚。附图说明图l描绘了涉及前行车辆的尾灯和接近车辆的头灯的受控汽车;图2描绘了外部灯光控制系统的方框图;图3描绘了光学系统的剖面图;图4a描绘了夜间检测算法的图表;图4b描绘了白天检测算法的图表;图5a-5c描绘了一般位于受控汽车前方的多种图像;图6a描绘了像素灰度值相对于像素行位置的曲线图;图6b描绘了像素灰度值相对于像素列位置的曲线图;图7描绘了一般位于受控汽车前方的一种图像;以及图8描绘了成像器组件。具体实施方式首先参照图1,出于说明的目的,显示了要安装在受控汽车5内的自动汽车外部灯光控制系统6。虽然控制系统6要与内部后视镜组件作为整体进行描绘,但应当理解,该控制系统或它的任何单个组件可以安装在受控汽车5内或者受控汽车5上的任何合适的位置。术语"受控汽车"在这里用来表示包括自动汽车外部灯光控制系统的车辆。用来安装相关图像传感器的适当位置是这样的位置:即能够提供一般位于受控汽车5前方的畅通无阻的视野,并且允许在受控汽车相应的眩光区域8内检测到接近车辆15的头灯16和前行车辆10的尾灯11。图2描绘了自动汽车外部灯光控制系统250的方框图,它采用了光学系统205和经由内部连接265与外部灯光控制器270进行通信的处理与控制系统255。所述处理与控制系统的功能是将配置数据发送到所述光学系统、从所述光学系统接收图像数据、然后像这里具体描述的那样来处理该图像,从而产生外部灯光控制信号。可以至少部分并入本发明的多种实施例中的自动汽车外部灯光控制系统和算法的具体描述包含在共同拥有的美国专利5,837,994、5,990,469、6,008,486、6,130,448、6,130,421、6,049,171、6,465,963、6,403,942、6,587,573、6,611,610、6,621,616、6,631,316中以及美国专利6,774,988、6,631,316、6,861,809、6,587,573和2004年1月15日7>开的美国专利申请2004/0008410、及2004年7月22日公开的美国专利申请2004/0143380中;这些专利所公布的内容在此全部引入作为参考。应当理解,图2的方框图仅仅是出于例证性说明的目的,并且像在此引入作为参考的可以并入。现在来看图3,这里显示了用于本发明的光学系统305。在图3所示的光学系统305中,一个图像传感器310安装在印刷电路板315上。光谱滤波器材料320,如红色光语滤波器,位于该图像传感器附近,使得相关像素中的至少一部分被光镨过滤。密封块325最好在图像传感器上铸造成型,使得密封块的一部分粘附到电路板上。透镜组件330通过紫外线硬化材料粘合剂335附着到密封块325。该透镜组件330包括一个第一透镜331,其功能是把从相关场景内的光源发出的光线340投射到图像阵列的光谱过滤部分。应当理解,用在该具体描述的一部分中的术语"光源"包括反射光线的反射体。透镜组件330还包括一个第二透镜332,其功能是把从与第一透镜相关的基本相同的场景中发出的光线340投射到图像阵列中的一个单独的部分。如将在这里更具体地描述的,某些实施例具有与基本相同的场景的两幅不同的光谱过滤图像相关的优点。例如,"红光对白光"的比率可以引入。孔径光阑345位于第一和第二透镜附近,用于阻止来自所希望的视野范围外的光线投射到图像传感器上。应当理解,图3中所示的光学系统是出于示例性说明的目的,如其公布内容在此引入作为参考的共同拥有的美国专利5,990,469、6,008,486、6,130,421、6,130,448、6,049,171和6,4403,942以及国际专利公开文本WO2004/077175中所示和描述的任何合适的光学系统都可以采用。如在此具体描述的,在至少一个实施例中,自动汽车外部灯光控制系统适用于检测所关心的大气状态,例如浓雾、雨夹雪、冰雹、烟尘、水汽、雪和雨。这里公布了用于检测所关心的大气状态的多种算法和方法,以及产生所希望的系统响应的主才几。在至少一个实施例中,自动汽车外部灯光控制系统适用于检测被阻挡的图像传感器状态。这里公布的用于检测被阻挡的图像传感器的至少一些方法还适用于检测有故障的图像传感器或系统。还公布了由被阻挡的或有故障的图像传感器所产生的适当的系统响应。至少一个实施例中的自动汽车外部灯光控制系统适用于检测环境的亮度等级,并据此实现外部灯光控制。许多外部灯光操作参数都可能依赖于环境光线信号。在另一个实施例中,自动汽车外部灯光控制适用于根据受控汽车的位置来控制外部灯光。某些国家和地区要求在如城区的位置内以及城市和城镇之内不能开启汽车的特定外部灯光。因此,根据本发明的至少一种自动汽车外部灯光控制系统被配置为相应地自动阻止至少一种外部灯光的自动运行。许多国家的交通规则禁止在行人或骑自行者容易被特定的外部灯光刺眼时运行特定的汽车外部灯光。在一个实施例中,自动汽车外部灯光控制系统被配置为阻止会使行人和骑自行车者遭受刺目强光的特定外部灯光的运行。另一个相关的实施例通过听觉和/视觉警报器来警告司机小心行人和骑自行车者,并且依靠司机手动地确保外部灯光的状态被选择。在已知的自动汽车外部灯光控制系统中,已经尝试对用于启动系统的环境亮度级进行测量。一种这样的系统使用了天空传感器,这种天空传感器通常在光学上指向受控汽车的上方。其存在很明显的制造方面的问题,即需要把印刷电路板上的天空传感器合与图像传感器结合到一起。现有技术中的采用前视环境光传感器的自动汽车外部灯光控制系统的运行容易不稳定。与受控车辆正在行驶的方向有关地,来自正在落下或升起的太阳的光线可能会影响感测到的环境亮度级,并且当行驶方向改变时会导致系统内的振荡。与已知的基于前视环境光传感器的系统相关的其它问题与接近的汽车头灯、路面光线阴影或天桥等等有关。类似的振荡或系统不稳定性可能发生在任何情景中。由于希望启动自动汽车外部灯光控制系统时所处的较低的环境亮度级,最好使用结合到用于电致变色元件控制的后视镜中的环境传感器和/眩光传感器。这些环境传感器、眩光传感器和后视镜控制器^^布在共同拥有的美国专利6,313,457、6,359,274、6,379,013、6,402,328、6,469,291和美国专利6,679,608和6,831,268中,这些公布的内容全部在此引入作为参考。在本发明的至少一个实施例中,"反向峰值,,检测算法被用来确定环境亮度级,并据此启动自动汽车外部灯光控制系统。在已知的系统中,采用检测并保存信号峰值的典型的环境光线峰值检测器。本发明的环境控制设备采用了峰值环境倒置方法。这里公布的算法对环境光线的最小值特别感兴趣。当环境亮度级特别低、约为l勒克斯或更低时,有很多情景可能会给出错误的高传感读数,如接近的汽车的头灯、AC街灯、正在落下的太阳、正在升起的太阳、路边标志照明等等。但是引起错误的低环境光线传感读数的情况并不多。最低的环境光线传感读数通常更能代表实际的环境光线。在本发明的一个实施例中,其算法使用过滤的环境值来实现,该值在原始环境亮度级信号小于当前被过滤的环境值时快速向下计数,并且在原始环境光线信号高于当前被过滤的值时緩慢向上计数。用于启动自动汽车外部灯光控制系统的与过滤的环境光传感器信号相关的优选的门限环境亮度级约为0.5勒克斯。但是应当理解,根据本发明可以使用更高或更低的门限值,如0.25-1.5勒克斯。启动自动汽车外部灯光控制系统的时间最好随着实际的环境亮度级变化。如果经过过滤的环境光线值接近门限,优选地的是,需要驾驶大约一英里来启动自动汽车外部灯光控制系统。如果经过过滤的值比门限低2倍或4倍,自动汽车外部灯光控制系统最好更快地启动。不同的启动速度是由于无论原始环境光线信号是否被过滤,都有可能得到由于接近的汽车头灯、路面照明等等引起的在很长时间或距离内一直很高的环境照明状态。因此,设计了优选的方法,如果在一段非常亮的区域后的环境光线非常低,就在几分之一英里内启动自动汽车外部灯光控制系统。如果环境光线上升到约为2勒克斯的迟滞范围之上,经过过滤的值将花费几分钟达到门限值以上。在这种环境中,在经过过滤的环境亮度级超过门限值之前,受控汽车将以高于2勒克斯的感测到的环境光线行驶几英里。优逸地,根据环境传感器信号来启动或关闭自动汽车外部灯光控制系统有时间上和/或距离上的迟滞。现在来看图4a和4b,这里的图表分别显示了根据本发明的夜间检测和白天检测的算法。在至少一个实施例中,采用夜间检测算法来启动自动汽车外部灯光控制。优选地,以大约75毫秒到约125毫秒的范围、最好是以100毫秒的间隔从相应的光电传感器获取原始环境光线值。然后这个原始环境光线值可用于计算环境短时间平均值、环境平均值、环境长时间平均值或它们的组合。优选地,环境短时间平均值是最近的16个环境传感器读数的加权平均;间隔为100毫秒时,这16个读数转化为1.6秒。优选地,环境长时间平均是最近的256个环境传感器读数的指数时间加权平均;间隔为100毫秒时,这些读数转化为25.6秒。进一步参照图4a,在夜间检测媒介430a处,从夜间检测关闭到夜间检测开启的转换405a优选地在该值介于约0.125勒克斯和约2勒克斯之间、最好约为0.5勒克斯时开始。在夜间检测高点435a处,从夜间检测开启到夜间检测关闭的转换415a优选地在该值介于约0.5勒克斯和约88勒克斯之间、最好约为2.0勒克斯时开始。优选地,转换405a是相对于环境长时间平均值,它具有的夜间检测关闭延迟计数器重设为约0秒。优选地,转换415a是相对于环境长时间平均值,它的延迟约为150秒。作为替代,在夜间检测低点425a处,从夜间检测关闭到夜间检测开启的转换410a优选地在该值介于约O.O勒克斯和约0.5勒克斯之间、最好约为0.125勒克斯时开始。优选地,转换410a是相对于环境短时间平均值。作为替代,在白天检测440a处,从夜间检测开启到夜间检测关闭的转换420a在介于约2勒克斯和约100勒克斯之间、最好约为88勒克斯时结束。优选地,转换420a是相对于环境长时间平均值。进一步参考图4b,优选地在白天检测420b处,从白天检测关闭到白天检测开启的转换405b在介于约44勒克斯和约100勒克斯之间、最好约为88勒克斯时开始。优选地,转换405b是相对于环境长时间平均值。优选地在白天检测关闭415b处,从白天检测开启到白天检测关闭的转换410b在介于约O.O勒克斯和约88勒克斯之间、最好约为44勒克斯时开始。优选地,转换410b是相对于环境长时间平均值。夜间检测算法的使用对启动和关闭自动汽车外部灯光控制来说特别有用。白天检测算法的使用对开启和关闭电致变色镜的自动控制来说特别有用。这些算法被有利地用于解决环境照明的变化,这些环境照明的变化是由于太阳光线、街灯、停车场照明、建筑物照明、月光、树木阴影、桥梁阴影、隧道阴影、以及从一种环境照明状态到另一种环境照明状态的转换所引起的。应当理解,这些算法可以应用于如潮湿感测、视觉系统、显示亮度控制等的其它汽车系统中。根据本发明的至少一个实施例,如以上参照图2讨论的、并在以上引入的专利和专利申请中公开的自动汽车外部灯光控制系统适用于检测由被反射的受控汽车的外部灯光散发的光线所引起的大气状态的出现。这种大气状态的例子包括但并不局限于浓雾、薄雾、雪、雨夹雪、冰雹、雨、水汽、烟尘、灰尘以及它们的组合。如这里所使用的术语"大气状态"被用来表示任何散射或反射光线的大气悬浮物。检测所关心的大气状态对受控汽车的外部灯光的反射所要求的灵敏度通常要高于检测前行车辆的尾灯和接近车辆的头灯所需要的灵敏度。下列用于检测所关心的大气状态的方法中的一些方法主要适用于在受控汽车的低光度头灯启动而高光度头灯停用时检测大气状态。但是应当理解,任何方法都可以用于高光度头灯启动时。当识别出存在街灯或其它非汽车灯光时不执行大气状态测量是有利的,因为这些灯光会千扰大气状态的测量。大气状态的测量可暂时搁置,直至这些不希望有的物体掠过相应的场景。通过评估安装了该系统来解决不同外部灯光设计之间的光束图样的差别的特殊汽本模型,以确定用来评估用于大气状态检测的图像和门限的参数是有利的。应当注意,受控汽车拥有的头灯可允许光束亮度、光束聚焦、水平目标、垂直目标、感知颜色的变化。当接近的汽车头灯出现时,对所关心的大气状态的检测的可靠性降低,因为接近的汽车的头灯可能"沖掉"图像。术语"冲掉"在这里用来描述所得到的图像,该图像包含有表示感测到的光线高亮度的几乎所有的像素。但是我们通常不关心图像的沖掉,因为接近的汽车头灯的检测将导致受控汽车的高亮度头灯被自动停用。一旦接近的车辆头灯经过图像,大气状态的测量可先于高亮度头灯的重启来执行。优选地,可获取高动态范围的图像以用于对检测大气状态的分析。通过获取高动态范围的图像,低水平和高水平的雾都能被检测到,且成像反射的"清晰度"被最准确地确定。如果本地选取的图像传感器可获取高动态范围的图像,就不要求专门的技术来产生足够的范围。如果所使用的图像传感器不具有足够的本地动态范围,那么可以通过在多个灵敏度上按顺序获取相同场景的多个图像,然后把它们结合起来,从而形成合成的高动态范围图像,这样就可以合成高动态范围的图像。这种技术在共同拥有的国际专利公开文本WO2004/034183中做了详细的公开,该公开内容全部在此引入作为参考。高动态范围图像优选地具有大于40dB的动态范围,最好具有大于60dB的动态范围。包含大于8位的动态范围的图像可以以对数方式存储在存储器中,从而减小系统的存储器需求。图5a显示了从安装在受控汽车中的、以高灵敏度拍摄的图像传感器获取的图像,该图像是在未出现任何关心的大气状态并且未出现来自其他物体或车辆的光线时拍摄的。在图像底部的相对低亮度区域描绘了路面上从受控汽车的低光度头灯反射的光线。图5b显示了出现中等水平的雾时以类似的参数获取的图像。图5c显示了出现高等水平的浓雾时以类似的参数获取的图像。相同系列的图像将具有类似的特征,因为除雾之外所关心的大气状态以及这里讨论的用于分析图像的方法对所有关心的大气状态都具有相同的应用。参照图7,当观察图5a-5c中所示的图像序列时可以看到,来自路面的反射效果与所关心的大气状态引起的反射效果是不同的。图6a显示了在雾的等级水平增长情况下反射的垂直上升。类似地,如图6b所示,伴随增长的雾,反射发生水平扩展。这一结论在区分由于雾或其他所关心的大气状态的反射与来自路面的反射时特别重要。在路面由于覆盖有水、雪、冰或者它们的混合物而能高强度反射时,来自路面的反射与来自大气状态的反射的区分特别困难。覆盖有水、雪、冰或它们的混合物的道路在这里称为"高反射性路面"。高反射性路面将导致受控汽车的外部灯光光线的相对较高的反射,如图7所示。由图7可见,受控汽车的光线的反射宽度701和水平宽度比由于图5b所示的所关心的大气状态所引起的光线反射501b要窄。因此,通过检查图像内反射的宽度和高度,就可以改善对所关心的大气状态的出现的确定。反射性路面在图像中通常看起来比雾更"清晰"。反射成像的清晰度的确定可以通过比较图像的直流成份来进行,即计算图像或图像的子区域的平均灰度值。图像中的清晰物体可以用边缘检测滤波器来识别,或者通过用高通滤波器、如拉普拉斯滤波器来处理图像或图像的子区域。高频成份和直流成份的比率可用于辨别所关心的大气状态的反射和来自道路或其它物体的反射。在某些状况下,基本上整个图像的平均灰度值或者总体灰度值的简单估计可被计算并与门限进行比较,从而检测所关心的大气状态。如果平均灰度值或者总体灰度值超过门限,那么就采取适当的措施,如阻止受控汽车的高光度头灯的自动开启。对于在非常高水平的浓雾状态、暴风雪、以及其它关心的大气状态下阻止外部灯光控制系统的自动运行来说,平均灰度值和总体灰度值的测量特别有用。该方法在高光度正被启动时也很有用。整个图像的很高的平均或总体灰度值可能表示司机已经进入了大雾区域,因此减低高光度头灯的亮度将是有利的。在其它状态下,如在仅仅低光度被开启或雾的水平较低时,可以从图像传感器内像素的行和列平均来计算多种参数,从而允许确定所关心的大气状态的出现。行和列平均作为每行和每列中所有像素的平均灰度值被计算。可选地,还可以使用行和列的总和。首先,基本上整个图像的平均灰度值或者总体灰度值的简单估计可被计算并与相应的门限进行比较。如果平均灰度值和/或者总体灰度值超过门限,那么就可以采取合适的措施,如阻止受控汽牟的高光度头灯自动开启。对于在非常高水平的浓雾状态、暴风雪、以及其它关心的大气状态下阻止外部灯光控制系统的自动运行来说,平均灰度值和总体灰度值的测量特别有用。对较低水平的雾或其它较低水平的所关心的大气状态来说,如图6a和6b中描绘的图表的斜率和/或截距的估计可被计算并与门限进行比较,以确定所关心的大气状态的出现。优选地,这些值在其平均值为非零和/或非饱和的列范围内计算。优选地,除计算斜率和/或截距之外,"确定系数"值:<formula>formulaseeoriginaldocumentpage15</formula>也(或者可选地)被计算,以确定斜率和/或截距的计算是否准确。如果得到的确定系数值过低,那么斜率和/或截距、方法就不应单独用于最后确定所关心的大气状态的出现。如以上提到的以及在图7中描绘的,高反射性路面反射的光线图像的行灰度值在某些情况下可能与所关心的大气状态反射的光线图像很相似。几种附加的选项可用来区分所关心的大气状态的反射光线与来自高反射性路面的反射光线。首先,该图像可分解为多个区域。例如,行平均可在图像的左边区域、中间区域和右边区域分别计算。在包含有从所关心的大气状态反射的光线的场景图像中,左边和右边区域相对于中间区域的垂直亮度增加是相似的。对于包含有从高反射性路面反射的光线场景图像,中间区域比右边和左边区域表示出高得多的反射垂直增加。其次,可以对列灰度值进行分析,以确定是否有在整个图像上的适当的均匀性,或者是否有明显的不均匀性。通过获取列平均作为平均值的百分比的标准偏差可以计算均匀性。作为替代,列平均的抛物线型拟合可用于确定在边缘处的灰度值是否有显著的下降。如果拟合中的二次项具有较大幅值,那么在边缘处就有较高的下降,如图6b所示。并且,可以再一次计算确定系数的值,以在接受测量值作为所关心的大气状态的出现的决定因素之前确定该拟合是否可以接受。最后,如以上讨论的,可以对图像的高和低的空间频率成份进行分析,以区分道路反射和雾反射。整个两维图像的高频分量都可被分析,并且行和列中高频分量的总和可以在一维上单独地考察。以上的计算方法通常的结果是得到可以被评估以确定是否出现所关心的大气状态的一种或多种参数。除了与大气相关之外的特定运行环境的情况可产生指示所关心的大气状态的测量。这种运行环境的例子包括雪堆的出现以及在覆盖有雪的斜坡上驾驶。在这些运行环境状态期间要避免对所关心的大气状态的错误识别,优选地在几个图像上、通常在几秒上对大气状态的测量取平均。例如,可以每秒获取一幅图像并加以分析,以检测所关心的大气状态。从该分析计算出的参数可以在20秒的时间段内取平均,然后把该平均的结果与门限相比较,以确定是否出现所关心的大气状态。当高水平的雾或其它关心的大气状态可能突然出现时,如当下降到山谷内时,要求更迅速的反应。要适应这些情况,可以考虑"极高,,的大气状态测量,以生成即刻响应。实现该功能的一种方法是采用高于门限的"绝对门限"与计算出的平均值进行对比。一步改善自动汽车外部灯光控制系统的运行。在这种情况下,第一门限用于表示所关心的大气状态的出现,第二门限用于表示大气状态已经消除。第二门限的设置使在检测后必须有更低水平的所关心的大气状态出现,该水平低于表示所述的大气状态出现所要求的水平。迟滞效应结合时间平均大气状态测量的使用提供了稳定的和可预测的自动汽车外部灯光控制系统。可选地或附带地,可添加时间和距离的移动延迟以防止在不同状态间的切换。例如,一旦已检测到所关心的大气状态并且自动高光度控制已被关闭,在高光度控制能够重新启动前必须经过特定的最小时间长度和Z或必须行驶过门限距离。另外一种用于检测所关心的大气状态的出现的方法包括检测图像中光线的均匀漫反射。首先,以足够的灵敏度获取图像以检测所关心的大气状态反射的来自受控汽车头灯的光线。所获取的图像可以与用于汽车光源检测的图像相同,可以是合成的高动态范围图像,或者可以是专门出于大气状态检测目的而获取的图像。也可以多次膝光拍摄多个图像,并组合为合成图像。当高光度头灯关闭时获取图像的灵敏度可以更高些,因为从高光度头灯反射的光通常比从低光度头灯反射的光亮得多。为了确定像素感测到的光是否来自均匀漫射源,可使用低通滤波器来消除测量的图像中的尖锐的或非连续特征。该滤波器可根据下面的公式运行:<formula>formulaseeoriginaldocumentpage17</formula>其中LPF是低通滤波器的值,C是当前像素的灰度值,N、S、E、W指当前像素的北面、南面、东面、西面相邻像素的灰度值,abs()是指绝对值函数。也可采用对相邻像素使用不同权重、或使用不同的或更大数目的相邻元素的其它滤波器。对窗口内超过最小亮度门限的所有像素执行该函数。如果LPF的值下降至低于表示像素是均勻漫射区域的一部分的门限,则大气状态水平计数器增大。该计数器把图像内亮度超过门限的所有像素相加,且这些像素通过使用低通滤波器而被确定为均匀漫射区域的一部分。大气状态水平计数器的值代表雾水平的即时测量。对该值取平均是很有用的,在如15秒到2分钟的一定的时间周期内和/或在完成较少的妨碍倾斜测量的移动距离上取平均。覆盖有雪的斜坡和/或雪堆也可以表示所关心的大气状态的出现。但是这些物体通常很快地掠过,因此在考虑平均值时被忽略。仅在汽车行驶时执行雾测量也是有利的。选择图像内的子窗口进行处理。例如,该子窗口可以是对应于高光度头灯开启时是水平线以上2度到水平线以下l度的像素区域,而高光度头灯关闭时是水平线以上2度到水平线以下2度的区域。由于增加了道路反射,更高的低端截频被用于高光度头灯。图像的宽度可以是用于汽车灯光检测的全部范围,例如大约为从偏左12度到偏右12度。图像窗口的选择可以根据汽车倾角传感器或其它校准设备的输入进行调整。优选地,所关心的大气状态的检测仅发生在图像没有其它光源或仅包含有限数目或有限亮度的光源时。如果检测到其它汽车的灯光,高光度头灯无论如何都将被停用,这样一般不会有什么不良后果。固定的照明器在受控汽车行驶时将从图像掠过,在此之后可以进行雾的检测。如果平均大气状态水平超过门限,那么高光度头灯就可以被切断或高光度头灯的自动启动就可以被禁用。在一些情况下,高光度头灯开启时可被检测的大气状态在高光度头灯关闭时可能不可检测。在这种情况下,自动高光度头灯的开启可以搁置一段预定的时间或预定的距离,直到司机通过一个开关重新启动控制,直至受控汽车停止,或者直至受控汽车已经停火然后重新启动。如果大气状态用低光度头灯可检测,那么一旦大气状态水平下降至低于门限水平时就可以重新启用高光度控制。在禁用和重新启动门限之间可以提供迟滞效应。用于在高光度头灯部分和/或全部地启用时检测所关心的大气状态的算法相对于低光度运相关的算法来说,最好引入不同的变量和/或倍增系数。在高光度头灯开启时,大气状态反射的光线不表现为渐变的垂直截频,如图6a和6b的斜率所表示。相反地,从大气状态对高光度头灯的反射几乎填满了对应于给定视野范围的整个图像。但是,由于高光度头灯高得多的同轴强度,轴上反射光线的量比具有相对短的曝光时间的图像中的要大得多。由于大得多的同轴强度,图像采集灵敏度可以选择比用来在高光度头灯关闭时检测大气状态的灵敏度更低的值。可选地,所获取的用来检测接近车辆的头灯或前行车辆的尾灯的图像可具有合适的灵敏度,以便在受控汽车的高光度头灯开启时检测大气状态。如果相关的图像是在合成的高动态范围图像的情况下以较低的灵敏度获取的,那么在受控汽车的高光度头灯开启时,所关心的大气状态的检测就可以采用以上关于低光度运行所讨论的图像的平均灰度值或者总体灰度值的计算来实现,另一种检测所关心的大气状态的方法特别适合于开启受控汽车的高光度头灯。但是应当理解,这种方法在仅开启低光度头灯时也可使用。首先,获取灵敏度非常高的图像和低灵敏度的图像。低灵敏度图像最好在相关场景中很少(如果有的话)有光源出现时被获取。优选地,在拍摄低灵敏度图像时不存在光源。另外优选地,在拍摄低灵敏度图像时,受控汽车的速度大于给定的门限,加速度小于第二门限且减速度小于第三门限。刹车促使受控汽车倾斜以致图像传感器立刻看到汽车前更多的路面,同时高光度头灯把更多灯光投向路面.因此,用于该分析的图像最好在没有刹车或减速时获取。接着,计算灵敏度非常高的图像中每行的平均灰度值。如果出现所关心的大气状态,那么在图像中向下移动时行平均灰度值将有净增加。从图像顶端到底端的行平均灰度值的净增加被测量并与门限进行比较。在图像的底端附近的行平均最大。仅存在于图像的上半部的光线将被舍弃。如果在顶端有光源且在底端有反射,那么该图像将被接受,表示存在所关心的大气状态。优选地第二个灵敏度非常高的图像和第二个低灵敏度图像经过红光谱过滤后被获取,基本整个图像的白红比率被计算出来,并用来表示所关心的大气状态的出现。另外,除行平均之外可采用白红比率,或者用其代替行平均。对于稳定的高光度水平,从雾反射的光将随着雾的浓度而变化。对一段较短时间,假定雾的浓度稳定且高光度的输出稳定,则亮度应当大致稳定。光线亮度的变化就表示雾不存在。另外,可以计算每个图像的每行的平均灰度值的至少一部分的总和。如果每行平均灰度值的总和大于饱和时几乎整个图像的高百分比,那么这就表示所关心的大气状态出现。可选地,如杲每行平均灰度值的总和是一个更低的值,且白红比率高于门限,那么该图像就可表示所关系的大气状态的出现。与从高反射性路面相比,从一些所关心的大气状态、特别是雾的反射具有更少的红光成份,优选地,在确定所关心的大气状态是否出现之前,以上的测量方法的组合可以满足最小时间和/或驾驶距离。有可能所关心的大气状态存在,但是以上描述的低光度大气水平测量不能检测到足够的值以给出肯定的表示。但是,一旦受控汽车的高光度头灯开启,检测到的大气状态水平就更显著。克服该问题的一种方法是在监控大气状态水平的同时增加受控汽车头灯的亮度。如果检测到的大气状态水平测量对应于头灯亮度的增加而上升,那么就可以推断出现大气状态的肯定的表征,然后自动高光度控制可被搁置。为了识别以上参照图6a和6b讨论的特征,图像每行、每列的行和列的总和可以提供为概率函数和/或神经网络的输入变量。如这里在别处描述的另外的输入变量和/或倍增系数可被引入。例如,神经网络可以由包含从所关心的大气状态发射的光线的图像、以及不包含大气状态的多种其它现场的图像的行和/或列、总和数据进行"训练"。特殊地,容易错认为出现所关心的大气状态的如覆盖有雪或其它高反射性道路的场景应当包括在训练数据中。神经网络可被配置用来识别图5a、5b、5c以及图7中描绘的那些状况,以提供表示所关心的大气状态的出现的输出。单独的神经网络可用于高光度头灯关闭和高光度头灯开启状态和/或受控汽车的外部灯光的状态可提供为神经网络的附加输入。通过把相邻的行和列合并到一个信号输出中可以降低神经网络所需的复杂度和输入的数目,有效地降低检测方法的分辨率。这在使用高分辨率图像传感器时特别有用,如果有充分的处理能力可用,那么所有的原始数据都可以用来训练该神经网络。可选地,可通过形成减小的分辨率图像而不是使用行和列总和数据来训练神经网络。减小的分辨率图像可以通过对相邻区域的几个像素取平均来形成,从而以选择的相邻区域的大小为系数减小了像素的数目。一旦在受控汽车的高光度头灯开启时识别到所关心的大气状态,高光度头灯的强度就逐渐减小并抑制自动控制,直至大气状态被消除。另外,在受控汽车的高光度被禁用后可以立刻获取低光度大气状态水平的测量并用作基准(即,在低光度控制被重新开启之前,低光度大气状态水平的测量必须降至低于该测量结果)。除了以上的使用图像传感器来检测从所关心的大气状态的方法以外,还可使用羊独的离散光电传感器或非成像光电检测器,如光电二极管、光电导管、光电门、其公布的内容在此全部引入作为参考的共同拥有的美国专利5,9卯,469;6,008,486;6,130,421;6,130,448;6,049,171;以及6,403,942中所描述的传感器,或任何基于传感器的可共同使用的光电转换器。使用离散的光电传感器,由所关心的大气状态引起的环境光线的增加可用作所关心的大气状态的出现的决定因素。在确定与受控汽车的高光度头灯开启时亮度的上升相对应的前向环境光线的增加时,离散光电传感器特别有用,因此至少部分地表示所关心的大气状态出现。使用离散光电传感器的优点是可以快得多且简单得多地得到光线水平传感读数,并且分析所获取的数据要求的处理时间的显著减少。如高亮度LED的辅助光源可用来进一步辅助所关心的大气状态的检测。该辅助光源可封装在成像装置或汽车的其它位置内,如在车头灯装置内。辅助光源最好这样辅助以使所关心的大气状态反射的来自光源的灯光可由图像和/或光电传感器进行检测。优选地,该光源是不可视光源,如可由传感器检测的红外光源。红外截频滤波器可以与能够显著地衰减大部分来自红外光源的光线的图像传感器一起使用。在这种情况下,单独的离散光传感器(或者甚至没有全部IR滤波的单独的图像传感器)可用于检测光源的反射。在这种情况下,离散光电传感器最好被设计为具有和光源的发射角大体相同的视角。最好是离散光电传感器被滤波,以仅仅允许辅助光源发射的光谱波段被检测。该离散光电传感器可以是电致变色镜的环境前视光传感器。然而离散光传感器的另一种替代方案是提供图像传感器的红外滤波器中的窄痕通带,以允许辅助光源的特定的波长通过。使用辅助光源检测所关心的大气状态最好通过获取两种图像进行,一种是开启光源时获得的,一种是停用光源时获得的。如果大气状态出现,光源的反射就会在随着光源开启而获取的图像中成像。两种图像的平均灰度值的差别可用作所关心的大气状态的测量量度。如果使用了离散光电传感器,就可以采取两种光等级的测量,一种是在辅助光源开启时获得的,而另一种是停用时获得的。两种测量之间的差别表示了所关心的大气状态的水平。另外,检测所关心的大气状态的任务可用其它装置或通过使用如温度或湿度传感器的能检测大气状态的非光学传感器来执行。光学和非光学技术的组合也是有利的,例子:所关心的大气状态的检测作为本发明的一个示例性实施例,五种因素可以组合起来以提供所关心的大气状态的表征。笫一,图像中检测到的光源的原始数目可以是一种因素。例如,该因素可以是介于0到7之间的一个数字。当所关心的大气状态在图像中变得更为普遍,任何出现的光源将同时趋于模糊。有的情况可能未出现光源或仅几个光源。但是,如果接近7个而非0个光源出现,那么出现所关心的大气状态的可能性就更小。所关心的大气状态出现的可能性与图像中光源的数目成线性关系,或者门限数目的光源可能触发该因素的布尔表示。第二,表示可能包括所关心的大气状态的因素考察一般如图5c所描绘的图像中像素的左边500c、中间501c以及右边502c列。优选地,中间列参照对应图像的自动瞄准特征被确定;左边列优选地位于中间列的左边大约笫15列,右边列位于中间列的右边大约第15列。然后向下移动各个列来计算各个像素的光等级,优选地从行4503c开始。如从图5c可见,图像505c的左上角被指定为第0行、第0列,并且图像510c的右下角被指定为第20行、第59列。应当理解,可以采用其它大小的图像,也可以考虑像素的其它列和/或行。一旦给定的行被确定为表示所关心的大气状态,就可以确认当在图像内向下移动时反射光等级的增加。另外,左边、中间和右边列的结果可相互比较以便于确认。与左边和右边相比更高的中间开始的行可以作为确认。可以采用一个最好介于-10到30之间的指标,它根据这些因素增加或减少,最终达到如第二个因素表示的所关心的大气状态的表征。第三,最好检查第19行第17-49列的靠近清晰图像底部的中心部分相邻像素的光等级的差别.如果绝对差别大于8,那么介于大约-30至大约5之间的相关的计数器中的计数就增加。如果该计数器大于或等于2,那么就从介于大约O至大约100范围内的烟雾可能性指标中减去10。如果计数器小于2,就把烟雾可能性指标加1。如果出现所关心的大气状态,那么就无法看到路标。如果图像中出现间歇的标记,如车道中间的条紋,那么雾可能性指标就很快减少。如果图像中未出现标记,雾指标就略微增加。这考虑到了标记之间的间隔,并减小了起因于间歇的路标的大的变化.应当理解,还可采用线性像素值阵列。第四,表示所关心的大气状态的多个像素通过考察图像中心附近的多列像素而确定。分析每个像素与它的四个相邻像素的均匀性。如果确定了像素与其邻元素是均匀的,介于大约O至大约100范围内的计数就增加。该计数然后被添加到雾指标,作为确定所关心的大气状态的因素。第五,对红光谱滤波图像和表示几乎相同视野的其他图像中的矩形区域内的像素计算其白红比率。图像的该区域中从所关心的大气状态的反射以及从道路的反射将最为普遍。使用线性像素值数据阵列计算每个矩形区域的平均光线。通过把平均清晰图像相关的值乘以10,然后用该数字除以平均红光图像相关的值可以确定白红比率。具有从所关心的大气状态的反射的一系列图像相对于具有从路面的反射的图像来说,它们对应的白红比率更加稳定。然后使用具有这里所描述的所有因素的概率函数结合对应的权重因子来计算所关心的大气状态的可能性。例如:P(所关心的大气状态)=入*(光线的原始数目)+B*(左边/中间/右边列的表示)+C*(条玟检测)+D*(表示状态的像素的数目)+虹*(白红比率)当检测到所关心的大气状态时,使高光度头灯变暗。在变暗之后,相应图像的几个矩形区域可以被记录。然后这些区域可用于确定何时应当自动开启高光度头灯。所有矩形的平均值用作模式识别模板,从后续的传感读数中减去那些值以确定所关心的大气状态是否保持。当每个矩形的差别相加时接近O的值表示接近匹配。这可存储在相应的存储器中并用于解决特定的受控汽车照明和成像器配置。除了在所关心的大气状态下执行阻止自动高光度头灯开启的任务,以上的方法可用于执行其它的功能,如启动前和/或后雾灯。通过相应地调整适当的门限,以上的方法可与控制高速公路照明协同使用,其中外部灯光光束的垂直角发生了变化;可以与弯曲照明协同使用,其中外部灯光光束的水平角发生了变化。另外,相关的自动汽车外部灯光控制系统可以被配置为产生至少一种或多种信号,该信号从包括外部灯光调节速度信号、图像分析信号、系统灵敏度信号、算法参数信号、算法开启信号、算法抑制信号、图像阵列窗口信号、操作者指示器信号、福勒天气光线亮度信号、尾灯亮度信号、视野领域信号、可变频镨滤波器信号、可变焦点距离信号、可变孔径信号、外部灯光转换延迟信号、外部灯光最大亮度信号、以及外部灯光最小亮度信号的组中选取。在另一实施例中,自动汽车外部灯光控制系统适用于检测图像传感器的障碍物。在图像传感器的安置使前向场景的视野穿过由挡风玻璃擦拭器清洁过的挡风玻璃的区域时,图像传感器的障碍物可能很少出现。但是,不易被挡风玻璃擦拭器去除的固定的污染物可能会出现,如顽固的污垢、冰或者其它不易被去除的污染物。如果这些污染物不妨碍司机穿过挡风玻璃的视野,司机可能不会积极地开启挡风玻璃擦拭器或以另外的方式采取措施清洁图像传感器前面区域的挡风玻璃。另外,由于图像传感器的障碍物是罕见的事件,司机可能觉察不到图像传感器的障碍物,从而怀疑自动汽车外部灯光控制系统出现错误,而不是仅仅被阻挡。在汽车开动之后立即或以一定的时间间隔检查被妨碍的成像器也是有利的。下面是几种用于检测被妨碍的图像传感器的方法。这些方法的任何一种或组合都可用于确定图像传感器是否被妨碍。通常在无疑地断定图像传感器被妨碍之前都要执行几种障碍物测量。一旦图像传感器的障碍物被确定,图像传感器就可以继续获取图像直至图像中再次检测到物体,此刻可以重新开启自动控制。如果在一个时间周期上、最好在一个很长的时间周期上已经获取了几个图像,且在任何图像中都没有检测到光源,就有可能是图像传感器发生了妨碍,要确认图像传感器被妨碍,可采用下列技术中的任何技术.现在参照图8描述另一种图像传感器检测的方法。如图所示,至少一个实施例具有成像装置815,该装置具有图像传感器816和通常瞄准受控汽车的挡风玻璃806的相关的光学器件817。优选地,从辅助光源810发射的光线811在成像装置815的视野领域内与挡风玻璃805的表面806、807相交。基于图像传感器的系统在共同拥有的美国专利5,923,027、6,617,564和6,681,163中公布;该公布内容全部在此引入作为参考。最好LED可投射少量的光线覆盖图像传感器穿过的整个区域,虽然更少或更大数量的光线也是足够的。光源应当发射图像传感器敏感的波长或波长范围的光。如果没有冰、挡风玻璃烟雾或其它污染物出现,那么来自LED的光线将穿过挡风玻璃并且对图像传感器来说将是不可见的。如果存在冰、挡风玻璃烟雾或其它污染物,来自LED光线将至少部分地以朗伯方式被反射,然后可被图像传感器获取的图像检测。冰、挡风玻璃雾或其它污染物像电影屏幕一样运动,从而使图像传感器检测到发射的光线。要检测朗伯反射光线,就要在LED被激励时获取图像。最好可拍摄两幅图像,一幅在LED被激励时拍摄,而一幅在未被激励时拍摄,然后它们的差别用于检测反射的光线。如果两个图像之间的差别很大,就可以确认相当数量的LED光线已被反射且图像传感器被妨碍。当前检测被妨碍的照相机的方法与先前公开的通过使用辅助光源检测大气状态的方法相似。在两种情况下光源都被激励,以便检测在图像传感器或离散光传感器之前的物质的反射。在当前情况下,该物质是挡风玻璃上的近场污染物或障碍物,而在先前情况下该物质是汽牟前面的大气状态,两种功能都可用共同的組件来执行。在感测近场障碍物时,可能希望以较低的功率来运行光源,或者可选地以较低的灵敏度运行图像传感器或离散光传感器,这是因为近场反射很可能要大得多。近场障碍物和大气状态之间的区别可以基于反射的强度来进行.但是,在检测到无论障碍物还是大气状态之后希望的措施是禁用自动外部灯光控制时,两种状况之间的区别不是必要的。另一种用于检测被妨碍的图像传感器的方法是利用远离图像传感器放置的辅助传感器来检测图像传感器被妨碍的状态。该辅助传感器可以是单个非成像传感器,它观察与图像传感器大体相同的方向,且具有与图像传感器相似的视角。理想地,辅助传感器至少距离图像传感器几英寸设置。电致变色后视镜的前向环境传感器可用作辅助传感器。如果前向环境传感器的视野领域与成像系统明显不同,那么单个具有更相似的视野领域的前向传感器就可以安装在镜中作为辅助传感器。要确定图像传感器是否有障碍物,就由辅助传感器获得光等级。如果辅助传感器测量到相当数量的光线,那么一些类型的光源就应当能被图像传感器检测到。以一定的灵敏度获取图像以使辅助传感器检测到的水平环境光线可在图像中检测到。如果在图像中检测不到光线,那么很可能图像传感器被妨碍。该方法在出现接近的汽车车头灯时特别有用。如果车头灯逼近,那么辅助传感器将检测到光等级的增加,在汽车经过后光等级的突然下降。如果这种状态下图像传感器获取的图像中未检测到车头灯,那么图像传感器很可能被妨碍。还有另外一种检测被妨碍的图像传感器的方法,它包括获取如图5a所示的图像。在图5a中,图像中可以看到路面对受控汽车的低光度头灯的反射。如果已知受控汽车的低光度头灯、或其它外部灯光开启时,路面对受控汽车的低光度头灯、或其它外部灯光的反射无法看到,那么图像传感器很可能被妨碍。在断定图像传感器被妨碍之前,应当在一段时间周期上获取多个图像。道路或斜坡上的颠簸可能导致低光度的反射更明显或更不明显,从而影响检测被妨碍的图像传感器的能力。如果汽车上存在如自动车头灯水平测量系统的axel传感器,那么这些传感器的输出可用来确立合适的时间获取图像以检测道路对低光度头灯的反射。在检测障碍物时,以上的发明可用于启动清洁或污染物去除系统,如擦拭器、洗涤器、除霜器、加热器或它们的组合,它们被设计为从位于图像传感器视野的路径上的表面上去除污染物。这对穿过除了擦拭器系统在此去除污染物的挡风玻璃的表面进行观察的图像传感器禾说特別重要。敢后,詈报光线或消息可以自动地显示给受控汽牟的司机,以表示自动汽车外部灯光控制系统被禁用或建议清洁挡风玻合适的障碍物指示器可以是可听的、可视的或听觉和视觉的组合。可视指示器可以是LED、真空荧光显示器、液晶显示器、LED/指数、背向照明液晶显示器,并且可以合并入仪表板、后视镜、前顶置中央储物箱、消息中心或受控汽车的司机可以看到的任何其它位置。听觉指示器可以合并到受控汽车的任何合适的设备内。提供的诊断消息可在服务站读取。除了阻止受控汽车的高光度头灯的自动控制之外,以上方法可用来确保其它视觉系统的自动故障防护的运行。例如,电子视觉系统可用来检测阻碍物,提供辅助的后向视觉系统、后向视觉系统、湿度传感器系统和许多其它的特征。如果存在烟雾、雨或雪,或者如果在图像传感器前面有障碍物,所有的这些和许多其它的特征都不能正确地运行。以上描述的发明可用来检测这些状态并促使该特征恢复到自动故障防护状态或警告司机,通过视觉或听觉来警告该特征不能实行,所以司机不能依靠该视觉系统来执行任务。另一种状况下在市区内驾驶时不希望有自动高光度控制。实际上,一些欧洲国家禁止在市区内使用高光度头灯。在以低于某特定速度、例如50公里/小时驾驶时,自动高光度头灯的开启可被搁置。可选地,GPS或其它航海系统可用来识别受控汽车的地理位置以及当汽车位于市区内时禁用自动控制。因为市区通常由城市灯光照明,所以在环境光线超过门限时或通过低速度和高环境照明门限的组合禁用高光度的开启。最后,在共同拥有的美国专利5,837,994中描述的并全部在此引入作为参考的检测AC街灯能够实现街灯密度的计算。每段移动的距离内的街灯数目也可被计算并用来测定市区状态。如果在给定的时间或距离内检测到的街灯的数目超过门限,那么自动高光度头灯的开启就被阻止。另外,在受控汽车确定运行在市区内时可开启市区照明。还有另外一种状况,在出现行人或骑自行车者时可能不希望有自动高光度的开启。行人或者骑自行车者很可能被来自接近的受控汽车的高光度头灯的眩光干扰或骚扰。高光度头灯的一种最重要的安全效益是改善能见距离和在更大距离上检测行人。如果暗化发生在受控汽车的司机有机会看到行人或骑自行车者之前,那么为了适应行人或骑自行车者的高光度头灯的自动暗化就可能否定高光度头灯的安全效益。但是,一旦司机已经识别到行人或骑自行车者并且它们的位置已被确定,高光度头灯就可能出于礼貌而变暗。为方便起见,必须为受控汽车的司机和占有者提供一个开关来促使高光度头灯变暗,以及至少暂时地搁置自动高光度头灯的开启,直至受控汽车已经驶过行人或骑自行者,或直至经过给定的时间周期。应当注意,任何给定的依照本发明的自动汽车外部灯光控制系统都可用来使用环境光线算法、大气状态检测算法、图像传感器障碍物算法、市区运行检测算法、以及行人或骑自行车者检测算法并结合任何对应于这里讨论的方法或系统。另外应当理解,这里描述的所有算法或方法都可被单独持续地采用。有许多变项可以影响特定的实施例以及每种算法或方法的实际实现。

Description

自动汽车外部灯光控制系统相关申请的交叉参考根据美国法典第35巻119条(e)款(35U.S.C§119(e)),本申请要求2003年2月21日提交的美国临时专利申请60/448,793的优先权。该临时专利申请公开的内容在此引入作为参考。技术领域本发明整体上涉及一种汽车外部灯光控制系统。更具体地说,本发明涉及一种响应于特定大气状态的出现而对外部汽车灯光进行控制的系统。背景技术为了适应交通状态的改变,自动汽车外部灯光控制系统通过减轻方便。众所周知,司机一般不适合经常地使用高光度头灯。与低光度头灯相比,高光度头灯在夜间能提供2至4倍、或者更多倍的能见距离。因此,使受控汽车的司机在夜间能够比相反情况下更早地看到障碍物或行人。光度切换任务的自动化以及增加高光度头灯的使用可为夜间驾驶带来安全的好处。已知的被设计用于自动地控制汽车外部灯光的系统使用前视数字成像系统来获取一般位于受控汽车前面的现场的图像,然后分析这些图像并检测驶近的汽车和前面的汽车的尾灯。如果环境照明状态足够低,以至于允许使用高光度头灯,且没有检测到驶近的或前面的汽车,高光度头灯就自动开启。当检测到其它的交通工具位于一定范围内、并且其它交通工具的司机会遭受受控汽车的高光度头灯带来刺眼的强光时,该受控汽车的高光度头灯的亮度就自动减小,由操作或它们的组合来调整、抑制目标。附带地或者可选地,要控制高光度头灯,自动化的汽车外部控制系统可适用于控制多种照明技术,包括至少一个低光度头灯的亮度、至少一个低光度头灯的目标、弯曲照明、高速公路照明、市区照明、雾灯、尾灯或任何其它的汽车照明设备。应当理解,其中所公开的内容在下面特别提到了高光度头灯的控制、或者对自动化高光度头灯控制的抑制,这些方法还可应用于包括但并不局限于以上列出的多种外部照明技术。当即使没有驶近的或前面的汽车也不希望高光度头灯工作时,由于多种因素,已知系统在很多时候都存在一个问题。这种状况的例子包括浓雾、暴风雪等恶劣天气,或者是当受控汽车的高光度头灯的光从这里所考虑的大气状态反射回来并使受控汽车的司机分心时。某些大气状态还减弱了来自其它汽车的光线,从而使成像系统难以在足够的距离检测到其它车辆。另一种一般不希望使用高光度头灯的情况是在市区内驾驶时。在一些欧洲国家,高亮度头灯在市区内是禁止使用的,即使没有驶近的或前面的车辆。与使用成像系统自动控制汽车外部灯光相关的问题出现在相关的图像传感器的视野被物体或图像传感器前的污染物妨碍或阻隔时。优选地,该成像系统被集成到受控汽车的后视镜组件内,这样成像传感器安置在挡风玻璃的后面的一个区域内,在该区域内相应的挡风玻璃被擦拭干净。但是,即使在这种结构中,仍然存在水块或其它污染物不能被擦拭器清除,从而可能妨碍图像传感器。在这些情况下,图像传感器可能感知不到来自驶近的或前面的车辆的灯光,从而使该系统错误地断定不存在其它车辆,并启动高光度头灯,从而使其它车辆的司机遭受刺目的强光。这些情形要求受控汽车的司机干预并切断自动系统,这样可能不能满足自动化要求,并降低自动汽车外部灯光控制系统的可信度。因此,具有优点的是在自动检测自动高光度控制系统不能令人满意地工作的情况下进行自动检测,并且自动禁用该特性并恢复为自动故障防护的低光度状态。在这些情况下通常仍然提供手动控制以允许司机在自动系统不能工作时确定想要的外部灯光状态。这里需要的是提供用于检测相关工作环境的特性的改进的自动汽车外部灯光控制系统。还需要被配置为自动响应检测到的工作环境的系统。发明内容本发明提供了自动汽车外部灯光控制系统,它能够提供检测相关工作环境的改善的特性。还提供了被配置为自动响应检测到的工作环境的系统。在至少一个实施例中,自动汽车外部灯光控制系统具有改善的环境照明检测特性。在相关的实施例中,提供了响应于检测到的环境灯光自动控制各种汽车系统的系统。在至少一个实施例中,自动汽车外部灯光控制系统具有所关心的检测特性的改善的大气状态。在相关的实施例中,提供了响应于检测到的所关心的大气状态、自动控制各种汽车系统的系统。在至少一个实施例中,自动汽车外部灯光控制系统具有改善的成像器妨碍和/或故障成像器检测特性。在相关的实施例中,提供了响应于检测到的成像器妨碍和/或故障成像器自动控制各种汽车系统的系统。在至少一个实施例中,自动汽车外部灯光控制系统具有改善的"市区"运行检测特性。在相关的实施例中,提供了响应于检测到的市区运行自动控制各种汽车系统的系统。在至少一个实施例中,自动汽车外部灯光控制系统具有改善的行人和/或骑自行车者的检测特性。在相关的实施例中,提供了响应于检测到的行人和/骑自行车者自动控制各种汽车系统的系统。在至少一个实施例中,本发明的多种改进都与其它的汽车系统集成在一起。在至少一个相关的实施例中,所述的各种集成的系统被配置为共享改善其运行和/或降低相关成本的组件。参照附图、示例和所附的权利要求,通过阅读下面的具体描述,本发明的其它优点将更为清楚。附图说明图l描绘了涉及前行车辆的尾灯和接近车辆的头灯的受控汽车;图2描绘了外部灯光控制系统的方框图;图3描绘了光学系统的剖面图;图4a描绘了夜间检测算法的图表;图4b描绘了白天检测算法的图表;图5a-5c描绘了一般位于受控汽车前方的多种图像;图6a描绘了像素灰度值相对于像素行位置的曲线图;图6b描绘了像素灰度值相对于像素列位置的曲线图;图7描绘了一般位于受控汽车前方的一种图像;以及图8描绘了成像器组件。具体实施方式首先参照图1,出于说明的目的,显示了要安装在受控汽车5内的自动汽车外部灯光控制系统6。虽然控制系统6要与内部后视镜组件作为整体进行描绘,但应当理解,该控制系统或它的任何单个组件可以安装在受控汽车5内或者受控汽车5上的任何合适的位置。术语"受控汽车"在这里用来表示包括自动汽车外部灯光控制系统的车辆。用来安装相关图像传感器的适当位置是这样的位置:即能够提供一般位于受控汽车5前方的畅通无阻的视野,并且允许在受控汽车相应的眩光区域8内检测到接近车辆15的头灯16和前行车辆10的尾灯11。图2描绘了自动汽车外部灯光控制系统250的方框图,它采用了光学系统205和经由内部连接265与外部灯光控制器270进行通信的处理与控制系统255。所述处理与控制系统的功能是将配置数据发送到所述光学系统、从所述光学系统接收图像数据、然后像这里具体描述的那样来处理该图像,从而产生外部灯光控制信号。可以至少部分并入本发明的多种实施例中的自动汽车外部灯光控制系统和算法的具体描述包含在共同拥有的美国专利5,837,994、5,990,469、6,008,486、6,130,448、6,130,421、6,049,171、6,465,963、6,403,942、6,587,573、6,611,610、6,621,616、6,631,316中以及美国专利6,774,988、6,631,316、6,861,809、6,587,573和2004年1月15日7>开的美国专利申请2004/0008410、及2004年7月22日公开的美国专利申请2004/0143380中;这些专利所公布的内容在此全部引入作为参考。应当理解,图2的方框图仅仅是出于例证性说明的目的,并且像在此引入作为参考的可以并入。现在来看图3,这里显示了用于本发明的光学系统305。在图3所示的光学系统305中,一个图像传感器310安装在印刷电路板315上。光谱滤波器材料320,如红色光语滤波器,位于该图像传感器附近,使得相关像素中的至少一部分被光镨过滤。密封块325最好在图像传感器上铸造成型,使得密封块的一部分粘附到电路板上。透镜组件330通过紫外线硬化材料粘合剂335附着到密封块325。该透镜组件330包括一个第一透镜331,其功能是把从相关场景内的光源发出的光线340投射到图像阵列的光谱过滤部分。应当理解,用在该具体描述的一部分中的术语"光源"包括反射光线的反射体。透镜组件330还包括一个第二透镜332,其功能是把从与第一透镜相关的基本相同的场景中发出的光线340投射到图像阵列中的一个单独的部分。如将在这里更具体地描述的,某些实施例具有与基本相同的场景的两幅不同的光谱过滤图像相关的优点。例如,"红光对白光"的比率可以引入。孔径光阑345位于第一和第二透镜附近,用于阻止来自所希望的视野范围外的光线投射到图像传感器上。应当理解,图3中所示的光学系统是出于示例性说明的目的,如其公布内容在此引入作为参考的共同拥有的美国专利5,990,469、6,008,486、6,130,421、6,130,448、6,049,171和6,4403,942以及国际专利公开文本WO2004/077175中所示和描述的任何合适的光学系统都可以采用。如在此具体描述的,在至少一个实施例中,自动汽车外部灯光控制系统适用于检测所关心的大气状态,例如浓雾、雨夹雪、冰雹、烟尘、水汽、雪和雨。这里公布了用于检测所关心的大气状态的多种算法和方法,以及产生所希望的系统响应的主才几。在至少一个实施例中,自动汽车外部灯光控制系统适用于检测被阻挡的图像传感器状态。这里公布的用于检测被阻挡的图像传感器的至少一些方法还适用于检测有故障的图像传感器或系统。还公布了由被阻挡的或有故障的图像传感器所产生的适当的系统响应。至少一个实施例中的自动汽车外部灯光控制系统适用于检测环境的亮度等级,并据此实现外部灯光控制。许多外部灯光操作参数都可能依赖于环境光线信号。在另一个实施例中,自动汽车外部灯光控制适用于根据受控汽车的位置来控制外部灯光。某些国家和地区要求在如城区的位置内以及城市和城镇之内不能开启汽车的特定外部灯光。因此,根据本发明的至少一种自动汽车外部灯光控制系统被配置为相应地自动阻止至少一种外部灯光的自动运行。许多国家的交通规则禁止在行人或骑自行者容易被特定的外部灯光刺眼时运行特定的汽车外部灯光。在一个实施例中,自动汽车外部灯光控制系统被配置为阻止会使行人和骑自行车者遭受刺目强光的特定外部灯光的运行。另一个相关的实施例通过听觉和/视觉警报器来警告司机小心行人和骑自行车者,并且依靠司机手动地确保外部灯光的状态被选择。在已知的自动汽车外部灯光控制系统中,已经尝试对用于启动系统的环境亮度级进行测量。一种这样的系统使用了天空传感器,这种天空传感器通常在光学上指向受控汽车的上方。其存在很明显的制造方面的问题,即需要把印刷电路板上的天空传感器合与图像传感器结合到一起。现有技术中的采用前视环境光传感器的自动汽车外部灯光控制系统的运行容易不稳定。与受控车辆正在行驶的方向有关地,来自正在落下或升起的太阳的光线可能会影响感测到的环境亮度级,并且当行驶方向改变时会导致系统内的振荡。与已知的基于前视环境光传感器的系统相关的其它问题与接近的汽车头灯、路面光线阴影或天桥等等有关。类似的振荡或系统不稳定性可能发生在任何情景中。由于希望启动自动汽车外部灯光控制系统时所处的较低的环境亮度级,最好使用结合到用于电致变色元件控制的后视镜中的环境传感器和/眩光传感器。这些环境传感器、眩光传感器和后视镜控制器^^布在共同拥有的美国专利6,313,457、6,359,274、6,379,013、6,402,328、6,469,291和美国专利6,679,608和6,831,268中,这些公布的内容全部在此引入作为参考。在本发明的至少一个实施例中,"反向峰值,,检测算法被用来确定环境亮度级,并据此启动自动汽车外部灯光控制系统。在已知的系统中,采用检测并保存信号峰值的典型的环境光线峰值检测器。本发明的环境控制设备采用了峰值环境倒置方法。这里公布的算法对环境光线的最小值特别感兴趣。当环境亮度级特别低、约为l勒克斯或更低时,有很多情景可能会给出错误的高传感读数,如接近的汽车的头灯、AC街灯、正在落下的太阳、正在升起的太阳、路边标志照明等等。但是引起错误的低环境光线传感读数的情况并不多。最低的环境光线传感读数通常更能代表实际的环境光线。在本发明的一个实施例中,其算法使用过滤的环境值来实现,该值在原始环境亮度级信号小于当前被过滤的环境值时快速向下计数,并且在原始环境光线信号高于当前被过滤的值时緩慢向上计数。用于启动自动汽车外部灯光控制系统的与过滤的环境光传感器信号相关的优选的门限环境亮度级约为0.5勒克斯。但是应当理解,根据本发明可以使用更高或更低的门限值,如0.25-1.5勒克斯。启动自动汽车外部灯光控制系统的时间最好随着实际的环境亮度级变化。如果经过过滤的环境光线值接近门限,优选地的是,需要驾驶大约一英里来启动自动汽车外部灯光控制系统。如果经过过滤的值比门限低2倍或4倍,自动汽车外部灯光控制系统最好更快地启动。不同的启动速度是由于无论原始环境光线信号是否被过滤,都有可能得到由于接近的汽车头灯、路面照明等等引起的在很长时间或距离内一直很高的环境照明状态。因此,设计了优选的方法,如果在一段非常亮的区域后的环境光线非常低,就在几分之一英里内启动自动汽车外部灯光控制系统。如果环境光线上升到约为2勒克斯的迟滞范围之上,经过过滤的值将花费几分钟达到门限值以上。在这种环境中,在经过过滤的环境亮度级超过门限值之前,受控汽车将以高于2勒克斯的感测到的环境光线行驶几英里。优逸地,根据环境传感器信号来启动或关闭自动汽车外部灯光控制系统有时间上和/或距离上的迟滞。现在来看图4a和4b,这里的图表分别显示了根据本发明的夜间检测和白天检测的算法。在至少一个实施例中,采用夜间检测算法来启动自动汽车外部灯光控制。优选地,以大约75毫秒到约125毫秒的范围、最好是以100毫秒的间隔从相应的光电传感器获取原始环境光线值。然后这个原始环境光线值可用于计算环境短时间平均值、环境平均值、环境长时间平均值或它们的组合。优选地,环境短时间平均值是最近的16个环境传感器读数的加权平均;间隔为100毫秒时,这16个读数转化为1.6秒。优选地,环境长时间平均是最近的256个环境传感器读数的指数时间加权平均;间隔为100毫秒时,这些读数转化为25.6秒。进一步参照图4a,在夜间检测媒介430a处,从夜间检测关闭到夜间检测开启的转换405a优选地在该值介于约0.125勒克斯和约2勒克斯之间、最好约为0.5勒克斯时开始。在夜间检测高点435a处,从夜间检测开启到夜间检测关闭的转换415a优选地在该值介于约0.5勒克斯和约88勒克斯之间、最好约为2.0勒克斯时开始。优选地,转换405a是相对于环境长时间平均值,它具有的夜间检测关闭延迟计数器重设为约0秒。优选地,转换415a是相对于环境长时间平均值,它的延迟约为150秒。作为替代,在夜间检测低点425a处,从夜间检测关闭到夜间检测开启的转换410a优选地在该值介于约O.O勒克斯和约0.5勒克斯之间、最好约为0.125勒克斯时开始。优选地,转换410a是相对于环境短时间平均值。作为替代,在白天检测440a处,从夜间检测开启到夜间检测关闭的转换420a在介于约2勒克斯和约100勒克斯之间、最好约为88勒克斯时结束。优选地,转换420a是相对于环境长时间平均值。进一步参考图4b,优选地在白天检测420b处,从白天检测关闭到白天检测开启的转换405b在介于约44勒克斯和约100勒克斯之间、最好约为88勒克斯时开始。优选地,转换405b是相对于环境长时间平均值。优选地在白天检测关闭415b处,从白天检测开启到白天检测关闭的转换410b在介于约O.O勒克斯和约88勒克斯之间、最好约为44勒克斯时开始。优选地,转换410b是相对于环境长时间平均值。夜间检测算法的使用对启动和关闭自动汽车外部灯光控制来说特别有用。白天检测算法的使用对开启和关闭电致变色镜的自动控制来说特别有用。这些算法被有利地用于解决环境照明的变化,这些环境照明的变化是由于太阳光线、街灯、停车场照明、建筑物照明、月光、树木阴影、桥梁阴影、隧道阴影、以及从一种环境照明状态到另一种环境照明状态的转换所引起的。应当理解,这些算法可以应用于如潮湿感测、视觉系统、显示亮度控制等的其它汽车系统中。根据本发明的至少一个实施例,如以上参照图2讨论的、并在以上引入的专利和专利申请中公开的自动汽车外部灯光控制系统适用于检测由被反射的受控汽车的外部灯光散发的光线所引起的大气状态的出现。这种大气状态的例子包括但并不局限于浓雾、薄雾、雪、雨夹雪、冰雹、雨、水汽、烟尘、灰尘以及它们的组合。如这里所使用的术语"大气状态"被用来表示任何散射或反射光线的大气悬浮物。检测所关心的大气状态对受控汽车的外部灯光的反射所要求的灵敏度通常要高于检测前行车辆的尾灯和接近车辆的头灯所需要的灵敏度。下列用于检测所关心的大气状态的方法中的一些方法主要适用于在受控汽车的低光度头灯启动而高光度头灯停用时检测大气状态。但是应当理解,任何方法都可以用于高光度头灯启动时。当识别出存在街灯或其它非汽车灯光时不执行大气状态测量是有利的,因为这些灯光会千扰大气状态的测量。大气状态的测量可暂时搁置,直至这些不希望有的物体掠过相应的场景。通过评估安装了该系统来解决不同外部灯光设计之间的光束图样的差别的特殊汽本模型,以确定用来评估用于大气状态检测的图像和门限的参数是有利的。应当注意,受控汽车拥有的头灯可允许光束亮度、光束聚焦、水平目标、垂直目标、感知颜色的变化。当接近的汽车头灯出现时,对所关心的大气状态的检测的可靠性降低,因为接近的汽车的头灯可能"沖掉"图像。术语"冲掉"在这里用来描述所得到的图像,该图像包含有表示感测到的光线高亮度的几乎所有的像素。但是我们通常不关心图像的沖掉,因为接近的汽车头灯的检测将导致受控汽车的高亮度头灯被自动停用。一旦接近的车辆头灯经过图像,大气状态的测量可先于高亮度头灯的重启来执行。优选地,可获取高动态范围的图像以用于对检测大气状态的分析。通过获取高动态范围的图像,低水平和高水平的雾都能被检测到,且成像反射的"清晰度"被最准确地确定。如果本地选取的图像传感器可获取高动态范围的图像,就不要求专门的技术来产生足够的范围。如果所使用的图像传感器不具有足够的本地动态范围,那么可以通过在多个灵敏度上按顺序获取相同场景的多个图像,然后把它们结合起来,从而形成合成的高动态范围图像,这样就可以合成高动态范围的图像。这种技术在共同拥有的国际专利公开文本WO2004/034183中做了详细的公开,该公开内容全部在此引入作为参考。高动态范围图像优选地具有大于40dB的动态范围,最好具有大于60dB的动态范围。包含大于8位的动态范围的图像可以以对数方式存储在存储器中,从而减小系统的存储器需求。图5a显示了从安装在受控汽车中的、以高灵敏度拍摄的图像传感器获取的图像,该图像是在未出现任何关心的大气状态并且未出现来自其他物体或车辆的光线时拍摄的。在图像底部的相对低亮度区域描绘了路面上从受控汽车的低光度头灯反射的光线。图5b显示了出现中等水平的雾时以类似的参数获取的图像。图5c显示了出现高等水平的浓雾时以类似的参数获取的图像。相同系列的图像将具有类似的特征,因为除雾之外所关心的大气状态以及这里讨论的用于分析图像的方法对所有关心的大气状态都具有相同的应用。参照图7,当观察图5a-5c中所示的图像序列时可以看到,来自路面的反射效果与所关心的大气状态引起的反射效果是不同的。图6a显示了在雾的等级水平增长情况下反射的垂直上升。类似地,如图6b所示,伴随增长的雾,反射发生水平扩展。这一结论在区分由于雾或其他所关心的大气状态的反射与来自路面的反射时特别重要。在路面由于覆盖有水、雪、冰或者它们的混合物而能高强度反射时,来自路面的反射与来自大气状态的反射的区分特别困难。覆盖有水、雪、冰或它们的混合物的道路在这里称为"高反射性路面"。高反射性路面将导致受控汽车的外部灯光光线的相对较高的反射,如图7所示。由图7可见,受控汽车的光线的反射宽度701和水平宽度比由于图5b所示的所关心的大气状态所引起的光线反射501b要窄。因此,通过检查图像内反射的宽度和高度,就可以改善对所关心的大气状态的出现的确定。反射性路面在图像中通常看起来比雾更"清晰"。反射成像的清晰度的确定可以通过比较图像的直流成份来进行,即计算图像或图像的子区域的平均灰度值。图像中的清晰物体可以用边缘检测滤波器来识别,或者通过用高通滤波器、如拉普拉斯滤波器来处理图像或图像的子区域。高频成份和直流成份的比率可用于辨别所关心的大气状态的反射和来自道路或其它物体的反射。在某些状况下,基本上整个图像的平均灰度值或者总体灰度值的简单估计可被计算并与门限进行比较,从而检测所关心的大气状态。如果平均灰度值或者总体灰度值超过门限,那么就采取适当的措施,如阻止受控汽车的高光度头灯的自动开启。对于在非常高水平的浓雾状态、暴风雪、以及其它关心的大气状态下阻止外部灯光控制系统的自动运行来说,平均灰度值和总体灰度值的测量特别有用。该方法在高光度正被启动时也很有用。整个图像的很高的平均或总体灰度值可能表示司机已经进入了大雾区域,因此减低高光度头灯的亮度将是有利的。在其它状态下,如在仅仅低光度被开启或雾的水平较低时,可以从图像传感器内像素的行和列平均来计算多种参数,从而允许确定所关心的大气状态的出现。行和列平均作为每行和每列中所有像素的平均灰度值被计算。可选地,还可以使用行和列的总和。首先,基本上整个图像的平均灰度值或者总体灰度值的简单估计可被计算并与相应的门限进行比较。如果平均灰度值和/或者总体灰度值超过门限,那么就可以采取合适的措施,如阻止受控汽牟的高光度头灯自动开启。对于在非常高水平的浓雾状态、暴风雪、以及其它关心的大气状态下阻止外部灯光控制系统的自动运行来说,平均灰度值和总体灰度值的测量特别有用。对较低水平的雾或其它较低水平的所关心的大气状态来说,如图6a和6b中描绘的图表的斜率和/或截距的估计可被计算并与门限进行比较,以确定所关心的大气状态的出现。优选地,这些值在其平均值为非零和/或非饱和的列范围内计算。优选地,除计算斜率和/或截距之外,"确定系数"值:<formula>formulaseeoriginaldocumentpage15</formula>也(或者可选地)被计算,以确定斜率和/或截距的计算是否准确。如果得到的确定系数值过低,那么斜率和/或截距、方法就不应单独用于最后确定所关心的大气状态的出现。如以上提到的以及在图7中描绘的,高反射性路面反射的光线图像的行灰度值在某些情况下可能与所关心的大气状态反射的光线图像很相似。几种附加的选项可用来区分所关心的大气状态的反射光线与来自高反射性路面的反射光线。首先,该图像可分解为多个区域。例如,行平均可在图像的左边区域、中间区域和右边区域分别计算。在包含有从所关心的大气状态反射的光线的场景图像中,左边和右边区域相对于中间区域的垂直亮度增加是相似的。对于包含有从高反射性路面反射的光线场景图像,中间区域比右边和左边区域表示出高得多的反射垂直增加。其次,可以对列灰度值进行分析,以确定是否有在整个图像上的适当的均匀性,或者是否有明显的不均匀性。通过获取列平均作为平均值的百分比的标准偏差可以计算均匀性。作为替代,列平均的抛物线型拟合可用于确定在边缘处的灰度值是否有显著的下降。如果拟合中的二次项具有较大幅值,那么在边缘处就有较高的下降,如图6b所示。并且,可以再一次计算确定系数的值,以在接受测量值作为所关心的大气状态的出现的决定因素之前确定该拟合是否可以接受。最后,如以上讨论的,可以对图像的高和低的空间频率成份进行分析,以区分道路反射和雾反射。整个两维图像的高频分量都可被分析,并且行和列中高频分量的总和可以在一维上单独地考察。以上的计算方法通常的结果是得到可以被评估以确定是否出现所关心的大气状态的一种或多种参数。除了与大气相关之外的特定运行环境的情况可产生指示所关心的大气状态的测量。这种运行环境的例子包括雪堆的出现以及在覆盖有雪的斜坡上驾驶。在这些运行环境状态期间要避免对所关心的大气状态的错误识别,优选地在几个图像上、通常在几秒上对大气状态的测量取平均。例如,可以每秒获取一幅图像并加以分析,以检测所关心的大气状态。从该分析计算出的参数可以在20秒的时间段内取平均,然后把该平均的结果与门限相比较,以确定是否出现所关心的大气状态。当高水平的雾或其它关心的大气状态可能突然出现时,如当下降到山谷内时,要求更迅速的反应。要适应这些情况,可以考虑"极高,,的大气状态测量,以生成即刻响应。实现该功能的一种方法是采用高于门限的"绝对门限"与计算出的平均值进行对比。一步改善自动汽车外部灯光控制系统的运行。在这种情况下,第一门限用于表示所关心的大气状态的出现,第二门限用于表示大气状态已经消除。第二门限的设置使在检测后必须有更低水平的所关心的大气状态出现,该水平低于表示所述的大气状态出现所要求的水平。迟滞效应结合时间平均大气状态测量的使用提供了稳定的和可预测的自动汽车外部灯光控制系统。可选地或附带地,可添加时间和距离的移动延迟以防止在不同状态间的切换。例如,一旦已检测到所关心的大气状态并且自动高光度控制已被关闭,在高光度控制能够重新启动前必须经过特定的最小时间长度和Z或必须行驶过门限距离。另外一种用于检测所关心的大气状态的出现的方法包括检测图像中光线的均匀漫反射。首先,以足够的灵敏度获取图像以检测所关心的大气状态反射的来自受控汽车头灯的光线。所获取的图像可以与用于汽车光源检测的图像相同,可以是合成的高动态范围图像,或者可以是专门出于大气状态检测目的而获取的图像。也可以多次膝光拍摄多个图像,并组合为合成图像。当高光度头灯关闭时获取图像的灵敏度可以更高些,因为从高光度头灯反射的光通常比从低光度头灯反射的光亮得多。为了确定像素感测到的光是否来自均匀漫射源,可使用低通滤波器来消除测量的图像中的尖锐的或非连续特征。该滤波器可根据下面的公式运行:<formula>formulaseeoriginaldocumentpage17</formula>其中LPF是低通滤波器的值,C是当前像素的灰度值,N、S、E、W指当前像素的北面、南面、东面、西面相邻像素的灰度值,abs()是指绝对值函数。也可采用对相邻像素使用不同权重、或使用不同的或更大数目的相邻元素的其它滤波器。对窗口内超过最小亮度门限的所有像素执行该函数。如果LPF的值下降至低于表示像素是均勻漫射区域的一部分的门限,则大气状态水平计数器增大。该计数器把图像内亮度超过门限的所有像素相加,且这些像素通过使用低通滤波器而被确定为均匀漫射区域的一部分。大气状态水平计数器的值代表雾水平的即时测量。对该值取平均是很有用的,在如15秒到2分钟的一定的时间周期内和/或在完成较少的妨碍倾斜测量的移动距离上取平均。覆盖有雪的斜坡和/或雪堆也可以表示所关心的大气状态的出现。但是这些物体通常很快地掠过,因此在考虑平均值时被忽略。仅在汽车行驶时执行雾测量也是有利的。选择图像内的子窗口进行处理。例如,该子窗口可以是对应于高光度头灯开启时是水平线以上2度到水平线以下l度的像素区域,而高光度头灯关闭时是水平线以上2度到水平线以下2度的区域。由于增加了道路反射,更高的低端截频被用于高光度头灯。图像的宽度可以是用于汽车灯光检测的全部范围,例如大约为从偏左12度到偏右12度。图像窗口的选择可以根据汽车倾角传感器或其它校准设备的输入进行调整。优选地,所关心的大气状态的检测仅发生在图像没有其它光源或仅包含有限数目或有限亮度的光源时。如果检测到其它汽车的灯光,高光度头灯无论如何都将被停用,这样一般不会有什么不良后果。固定的照明器在受控汽车行驶时将从图像掠过,在此之后可以进行雾的检测。如果平均大气状态水平超过门限,那么高光度头灯就可以被切断或高光度头灯的自动启动就可以被禁用。在一些情况下,高光度头灯开启时可被检测的大气状态在高光度头灯关闭时可能不可检测。在这种情况下,自动高光度头灯的开启可以搁置一段预定的时间或预定的距离,直到司机通过一个开关重新启动控制,直至受控汽车停止,或者直至受控汽车已经停火然后重新启动。如果大气状态用低光度头灯可检测,那么一旦大气状态水平下降至低于门限水平时就可以重新启用高光度控制。在禁用和重新启动门限之间可以提供迟滞效应。用于在高光度头灯部分和/或全部地启用时检测所关心的大气状态的算法相对于低光度运相关的算法来说,最好引入不同的变量和/或倍增系数。在高光度头灯开启时,大气状态反射的光线不表现为渐变的垂直截频,如图6a和6b的斜率所表示。相反地,从大气状态对高光度头灯的反射几乎填满了对应于给定视野范围的整个图像。但是,由于高光度头灯高得多的同轴强度,轴上反射光线的量比具有相对短的曝光时间的图像中的要大得多。由于大得多的同轴强度,图像采集灵敏度可以选择比用来在高光度头灯关闭时检测大气状态的灵敏度更低的值。可选地,所获取的用来检测接近车辆的头灯或前行车辆的尾灯的图像可具有合适的灵敏度,以便在受控汽车的高光度头灯开启时检测大气状态。如果相关的图像是在合成的高动态范围图像的情况下以较低的灵敏度获取的,那么在受控汽车的高光度头灯开启时,所关心的大气状态的检测就可以采用以上关于低光度运行所讨论的图像的平均灰度值或者总体灰度值的计算来实现,另一种检测所关心的大气状态的方法特别适合于开启受控汽车的高光度头灯。但是应当理解,这种方法在仅开启低光度头灯时也可使用。首先,获取灵敏度非常高的图像和低灵敏度的图像。低灵敏度图像最好在相关场景中很少(如果有的话)有光源出现时被获取。优选地,在拍摄低灵敏度图像时不存在光源。另外优选地,在拍摄低灵敏度图像时,受控汽车的速度大于给定的门限,加速度小于第二门限且减速度小于第三门限。刹车促使受控汽车倾斜以致图像传感器立刻看到汽车前更多的路面,同时高光度头灯把更多灯光投向路面.因此,用于该分析的图像最好在没有刹车或减速时获取。接着,计算灵敏度非常高的图像中每行的平均灰度值。如果出现所关心的大气状态,那么在图像中向下移动时行平均灰度值将有净增加。从图像顶端到底端的行平均灰度值的净增加被测量并与门限进行比较。在图像的底端附近的行平均最大。仅存在于图像的上半部的光线将被舍弃。如果在顶端有光源且在底端有反射,那么该图像将被接受,表示存在所关心的大气状态。优选地第二个灵敏度非常高的图像和第二个低灵敏度图像经过红光谱过滤后被获取,基本整个图像的白红比率被计算出来,并用来表示所关心的大气状态的出现。另外,除行平均之外可采用白红比率,或者用其代替行平均。对于稳定的高光度水平,从雾反射的光将随着雾的浓度而变化。对一段较短时间,假定雾的浓度稳定且高光度的输出稳定,则亮度应当大致稳定。光线亮度的变化就表示雾不存在。另外,可以计算每个图像的每行的平均灰度值的至少一部分的总和。如果每行平均灰度值的总和大于饱和时几乎整个图像的高百分比,那么这就表示所关心的大气状态出现。可选地,如杲每行平均灰度值的总和是一个更低的值,且白红比率高于门限,那么该图像就可表示所关系的大气状态的出现。与从高反射性路面相比,从一些所关心的大气状态、特别是雾的反射具有更少的红光成份,优选地,在确定所关心的大气状态是否出现之前,以上的测量方法的组合可以满足最小时间和/或驾驶距离。有可能所关心的大气状态存在,但是以上描述的低光度大气水平测量不能检测到足够的值以给出肯定的表示。但是,一旦受控汽车的高光度头灯开启,检测到的大气状态水平就更显著。克服该问题的一种方法是在监控大气状态水平的同时增加受控汽车头灯的亮度。如果检测到的大气状态水平测量对应于头灯亮度的增加而上升,那么就可以推断出现大气状态的肯定的表征,然后自动高光度控制可被搁置。为了识别以上参照图6a和6b讨论的特征,图像每行、每列的行和列的总和可以提供为概率函数和/或神经网络的输入变量。如这里在别处描述的另外的输入变量和/或倍增系数可被引入。例如,神经网络可以由包含从所关心的大气状态发射的光线的图像、以及不包含大气状态的多种其它现场的图像的行和/或列、总和数据进行"训练"。特殊地,容易错认为出现所关心的大气状态的如覆盖有雪或其它高反射性道路的场景应当包括在训练数据中。神经网络可被配置用来识别图5a、5b、5c以及图7中描绘的那些状况,以提供表示所关心的大气状态的出现的输出。单独的神经网络可用于高光度头灯关闭和高光度头灯开启状态和/或受控汽车的外部灯光的状态可提供为神经网络的附加输入。通过把相邻的行和列合并到一个信号输出中可以降低神经网络所需的复杂度和输入的数目,有效地降低检测方法的分辨率。这在使用高分辨率图像传感器时特别有用,如果有充分的处理能力可用,那么所有的原始数据都可以用来训练该神经网络。可选地,可通过形成减小的分辨率图像而不是使用行和列总和数据来训练神经网络。减小的分辨率图像可以通过对相邻区域的几个像素取平均来形成,从而以选择的相邻区域的大小为系数减小了像素的数目。一旦在受控汽车的高光度头灯开启时识别到所关心的大气状态,高光度头灯的强度就逐渐减小并抑制自动控制,直至大气状态被消除。另外,在受控汽车的高光度被禁用后可以立刻获取低光度大气状态水平的测量并用作基准(即,在低光度控制被重新开启之前,低光度大气状态水平的测量必须降至低于该测量结果)。除了以上的使用图像传感器来检测从所关心的大气状态的方法以外,还可使用羊独的离散光电传感器或非成像光电检测器,如光电二极管、光电导管、光电门、其公布的内容在此全部引入作为参考的共同拥有的美国专利5,9卯,469;6,008,486;6,130,421;6,130,448;6,049,171;以及6,403,942中所描述的传感器,或任何基于传感器的可共同使用的光电转换器。使用离散的光电传感器,由所关心的大气状态引起的环境光线的增加可用作所关心的大气状态的出现的决定因素。在确定与受控汽车的高光度头灯开启时亮度的上升相对应的前向环境光线的增加时,离散光电传感器特别有用,因此至少部分地表示所关心的大气状态出现。使用离散光电传感器的优点是可以快得多且简单得多地得到光线水平传感读数,并且分析所获取的数据要求的处理时间的显著减少。如高亮度LED的辅助光源可用来进一步辅助所关心的大气状态的检测。该辅助光源可封装在成像装置或汽车的其它位置内,如在车头灯装置内。辅助光源最好这样辅助以使所关心的大气状态反射的来自光源的灯光可由图像和/或光电传感器进行检测。优选地,该光源是不可视光源,如可由传感器检测的红外光源。红外截频滤波器可以与能够显著地衰减大部分来自红外光源的光线的图像传感器一起使用。在这种情况下,单独的离散光传感器(或者甚至没有全部IR滤波的单独的图像传感器)可用于检测光源的反射。在这种情况下,离散光电传感器最好被设计为具有和光源的发射角大体相同的视角。最好是离散光电传感器被滤波,以仅仅允许辅助光源发射的光谱波段被检测。该离散光电传感器可以是电致变色镜的环境前视光传感器。然而离散光传感器的另一种替代方案是提供图像传感器的红外滤波器中的窄痕通带,以允许辅助光源的特定的波长通过。使用辅助光源检测所关心的大气状态最好通过获取两种图像进行,一种是开启光源时获得的,一种是停用光源时获得的。如果大气状态出现,光源的反射就会在随着光源开启而获取的图像中成像。两种图像的平均灰度值的差别可用作所关心的大气状态的测量量度。如果使用了离散光电传感器,就可以采取两种光等级的测量,一种是在辅助光源开启时获得的,而另一种是停用时获得的。两种测量之间的差别表示了所关心的大气状态的水平。另外,检测所关心的大气状态的任务可用其它装置或通过使用如温度或湿度传感器的能检测大气状态的非光学传感器来执行。光学和非光学技术的组合也是有利的,例子:所关心的大气状态的检测作为本发明的一个示例性实施例,五种因素可以组合起来以提供所关心的大气状态的表征。笫一,图像中检测到的光源的原始数目可以是一种因素。例如,该因素可以是介于0到7之间的一个数字。当所关心的大气状态在图像中变得更为普遍,任何出现的光源将同时趋于模糊。有的情况可能未出现光源或仅几个光源。但是,如果接近7个而非0个光源出现,那么出现所关心的大气状态的可能性就更小。所关心的大气状态出现的可能性与图像中光源的数目成线性关系,或者门限数目的光源可能触发该因素的布尔表示。第二,表示可能包括所关心的大气状态的因素考察一般如图5c所描绘的图像中像素的左边500c、中间501c以及右边502c列。优选地,中间列参照对应图像的自动瞄准特征被确定;左边列优选地位于中间列的左边大约笫15列,右边列位于中间列的右边大约第15列。然后向下移动各个列来计算各个像素的光等级,优选地从行4503c开始。如从图5c可见,图像505c的左上角被指定为第0行、第0列,并且图像510c的右下角被指定为第20行、第59列。应当理解,可以采用其它大小的图像,也可以考虑像素的其它列和/或行。一旦给定的行被确定为表示所关心的大气状态,就可以确认当在图像内向下移动时反射光等级的增加。另外,左边、中间和右边列的结果可相互比较以便于确认。与左边和右边相比更高的中间开始的行可以作为确认。可以采用一个最好介于-10到30之间的指标,它根据这些因素增加或减少,最终达到如第二个因素表示的所关心的大气状态的表征。第三,最好检查第19行第17-49列的靠近清晰图像底部的中心部分相邻像素的光等级的差别.如果绝对差别大于8,那么介于大约-30至大约5之间的相关的计数器中的计数就增加。如果该计数器大于或等于2,那么就从介于大约O至大约100范围内的烟雾可能性指标中减去10。如果计数器小于2,就把烟雾可能性指标加1。如果出现所关心的大气状态,那么就无法看到路标。如果图像中出现间歇的标记,如车道中间的条紋,那么雾可能性指标就很快减少。如果图像中未出现标记,雾指标就略微增加。这考虑到了标记之间的间隔,并减小了起因于间歇的路标的大的变化.应当理解,还可采用线性像素值阵列。第四,表示所关心的大气状态的多个像素通过考察图像中心附近的多列像素而确定。分析每个像素与它的四个相邻像素的均匀性。如果确定了像素与其邻元素是均匀的,介于大约O至大约100范围内的计数就增加。该计数然后被添加到雾指标,作为确定所关心的大气状态的因素。第五,对红光谱滤波图像和表示几乎相同视野的其他图像中的矩形区域内的像素计算其白红比率。图像的该区域中从所关心的大气状态的反射以及从道路的反射将最为普遍。使用线性像素值数据阵列计算每个矩形区域的平均光线。通过把平均清晰图像相关的值乘以10,然后用该数字除以平均红光图像相关的值可以确定白红比率。具有从所关心的大气状态的反射的一系列图像相对于具有从路面的反射的图像来说,它们对应的白红比率更加稳定。然后使用具有这里所描述的所有因素的概率函数结合对应的权重因子来计算所关心的大气状态的可能性。例如:P(所关心的大气状态)=入*(光线的原始数目)+B*(左边/中间/右边列的表示)+C*(条玟检测)+D*(表示状态的像素的数目)+虹*(白红比率)当检测到所关心的大气状态时,使高光度头灯变暗。在变暗之后,相应图像的几个矩形区域可以被记录。然后这些区域可用于确定何时应当自动开启高光度头灯。所有矩形的平均值用作模式识别模板,从后续的传感读数中减去那些值以确定所关心的大气状态是否保持。当每个矩形的差别相加时接近O的值表示接近匹配。这可存储在相应的存储器中并用于解决特定的受控汽车照明和成像器配置。除了在所关心的大气状态下执行阻止自动高光度头灯开启的任务,以上的方法可用于执行其它的功能,如启动前和/或后雾灯。通过相应地调整适当的门限,以上的方法可与控制高速公路照明协同使用,其中外部灯光光束的垂直角发生了变化;可以与弯曲照明协同使用,其中外部灯光光束的水平角发生了变化。另外,相关的自动汽车外部灯光控制系统可以被配置为产生至少一种或多种信号,该信号从包括外部灯光调节速度信号、图像分析信号、系统灵敏度信号、算法参数信号、算法开启信号、算法抑制信号、图像阵列窗口信号、操作者指示器信号、福勒天气光线亮度信号、尾灯亮度信号、视野领域信号、可变频镨滤波器信号、可变焦点距离信号、可变孔径信号、外部灯光转换延迟信号、外部灯光最大亮度信号、以及外部灯光最小亮度信号的组中选取。在另一实施例中,自动汽车外部灯光控制系统适用于检测图像传感器的障碍物。在图像传感器的安置使前向场景的视野穿过由挡风玻璃擦拭器清洁过的挡风玻璃的区域时,图像传感器的障碍物可能很少出现。但是,不易被挡风玻璃擦拭器去除的固定的污染物可能会出现,如顽固的污垢、冰或者其它不易被去除的污染物。如果这些污染物不妨碍司机穿过挡风玻璃的视野,司机可能不会积极地开启挡风玻璃擦拭器或以另外的方式采取措施清洁图像传感器前面区域的挡风玻璃。另外,由于图像传感器的障碍物是罕见的事件,司机可能觉察不到图像传感器的障碍物,从而怀疑自动汽车外部灯光控制系统出现错误,而不是仅仅被阻挡。在汽车开动之后立即或以一定的时间间隔检查被妨碍的成像器也是有利的。下面是几种用于检测被妨碍的图像传感器的方法。这些方法的任何一种或组合都可用于确定图像传感器是否被妨碍。通常在无疑地断定图像传感器被妨碍之前都要执行几种障碍物测量。一旦图像传感器的障碍物被确定,图像传感器就可以继续获取图像直至图像中再次检测到物体,此刻可以重新开启自动控制。如果在一个时间周期上、最好在一个很长的时间周期上已经获取了几个图像,且在任何图像中都没有检测到光源,就有可能是图像传感器发生了妨碍,要确认图像传感器被妨碍,可采用下列技术中的任何技术.现在参照图8描述另一种图像传感器检测的方法。如图所示,至少一个实施例具有成像装置815,该装置具有图像传感器816和通常瞄准受控汽车的挡风玻璃806的相关的光学器件817。优选地,从辅助光源810发射的光线811在成像装置815的视野领域内与挡风玻璃805的表面806、807相交。基于图像传感器的系统在共同拥有的美国专利5,923,027、6,617,564和6,681,163中公布;该公布内容全部在此引入作为参考。最好LED可投射少量的光线覆盖图像传感器穿过的整个区域,虽然更少或更大数量的光线也是足够的。光源应当发射图像传感器敏感的波长或波长范围的光。如果没有冰、挡风玻璃烟雾或其它污染物出现,那么来自LED的光线将穿过挡风玻璃并且对图像传感器来说将是不可见的。如果存在冰、挡风玻璃烟雾或其它污染物,来自LED光线将至少部分地以朗伯方式被反射,然后可被图像传感器获取的图像检测。冰、挡风玻璃雾或其它污染物像电影屏幕一样运动,从而使图像传感器检测到发射的光线。要检测朗伯反射光线,就要在LED被激励时获取图像。最好可拍摄两幅图像,一幅在LED被激励时拍摄,而一幅在未被激励时拍摄,然后它们的差别用于检测反射的光线。如果两个图像之间的差别很大,就可以确认相当数量的LED光线已被反射且图像传感器被妨碍。当前检测被妨碍的照相机的方法与先前公开的通过使用辅助光源检测大气状态的方法相似。在两种情况下光源都被激励,以便检测在图像传感器或离散光传感器之前的物质的反射。在当前情况下,该物质是挡风玻璃上的近场污染物或障碍物,而在先前情况下该物质是汽牟前面的大气状态,两种功能都可用共同的組件来执行。在感测近场障碍物时,可能希望以较低的功率来运行光源,或者可选地以较低的灵敏度运行图像传感器或离散光传感器,这是因为近场反射很可能要大得多。近场障碍物和大气状态之间的区别可以基于反射的强度来进行.但是,在检测到无论障碍物还是大气状态之后希望的措施是禁用自动外部灯光控制时,两种状况之间的区别不是必要的。另一种用于检测被妨碍的图像传感器的方法是利用远离图像传感器放置的辅助传感器来检测图像传感器被妨碍的状态。该辅助传感器可以是单个非成像传感器,它观察与图像传感器大体相同的方向,且具有与图像传感器相似的视角。理想地,辅助传感器至少距离图像传感器几英寸设置。电致变色后视镜的前向环境传感器可用作辅助传感器。如果前向环境传感器的视野领域与成像系统明显不同,那么单个具有更相似的视野领域的前向传感器就可以安装在镜中作为辅助传感器。要确定图像传感器是否有障碍物,就由辅助传感器获得光等级。如果辅助传感器测量到相当数量的光线,那么一些类型的光源就应当能被图像传感器检测到。以一定的灵敏度获取图像以使辅助传感器检测到的水平环境光线可在图像中检测到。如果在图像中检测不到光线,那么很可能图像传感器被妨碍。该方法在出现接近的汽车车头灯时特别有用。如果车头灯逼近,那么辅助传感器将检测到光等级的增加,在汽车经过后光等级的突然下降。如果这种状态下图像传感器获取的图像中未检测到车头灯,那么图像传感器很可能被妨碍。还有另外一种检测被妨碍的图像传感器的方法,它包括获取如图5a所示的图像。在图5a中,图像中可以看到路面对受控汽车的低光度头灯的反射。如果已知受控汽车的低光度头灯、或其它外部灯光开启时,路面对受控汽车的低光度头灯、或其它外部灯光的反射无法看到,那么图像传感器很可能被妨碍。在断定图像传感器被妨碍之前,应当在一段时间周期上获取多个图像。道路或斜坡上的颠簸可能导致低光度的反射更明显或更不明显,从而影响检测被妨碍的图像传感器的能力。如果汽车上存在如自动车头灯水平测量系统的axel传感器,那么这些传感器的输出可用来确立合适的时间获取图像以检测道路对低光度头灯的反射。在检测障碍物时,以上的发明可用于启动清洁或污染物去除系统,如擦拭器、洗涤器、除霜器、加热器或它们的组合,它们被设计为从位于图像传感器视野的路径上的表面上去除污染物。这对穿过除了擦拭器系统在此去除污染物的挡风玻璃的表面进行观察的图像传感器禾说特別重要。敢后,詈报光线或消息可以自动地显示给受控汽牟的司机,以表示自动汽车外部灯光控制系统被禁用或建议清洁挡风玻合适的障碍物指示器可以是可听的、可视的或听觉和视觉的组合。可视指示器可以是LED、真空荧光显示器、液晶显示器、LED/指数、背向照明液晶显示器,并且可以合并入仪表板、后视镜、前顶置中央储物箱、消息中心或受控汽车的司机可以看到的任何其它位置。听觉指示器可以合并到受控汽车的任何合适的设备内。提供的诊断消息可在服务站读取。除了阻止受控汽车的高光度头灯的自动控制之外,以上方法可用来确保其它视觉系统的自动故障防护的运行。例如,电子视觉系统可用来检测阻碍物,提供辅助的后向视觉系统、后向视觉系统、湿度传感器系统和许多其它的特征。如果存在烟雾、雨或雪,或者如果在图像传感器前面有障碍物,所有的这些和许多其它的特征都不能正确地运行。以上描述的发明可用来检测这些状态并促使该特征恢复到自动故障防护状态或警告司机,通过视觉或听觉来警告该特征不能实行,所以司机不能依靠该视觉系统来执行任务。另一种状况下在市区内驾驶时不希望有自动高光度控制。实际上,一些欧洲国家禁止在市区内使用高光度头灯。在以低于某特定速度、例如50公里/小时驾驶时,自动高光度头灯的开启可被搁置。可选地,GPS或其它航海系统可用来识别受控汽车的地理位置以及当汽车位于市区内时禁用自动控制。因为市区通常由城市灯光照明,所以在环境光线超过门限时或通过低速度和高环境照明门限的组合禁用高光度的开启。最后,在共同拥有的美国专利5,837,994中描述的并全部在此引入作为参考的检测AC街灯能够实现街灯密度的计算。每段移动的距离内的街灯数目也可被计算并用来测定市区状态。如果在给定的时间或距离内检测到的街灯的数目超过门限,那么自动高光度头灯的开启就被阻止。另外,在受控汽车确定运行在市区内时可开启市区照明。还有另外一种状况,在出现行人或骑自行车者时可能不希望有自动高光度的开启。行人或者骑自行车者很可能被来自接近的受控汽车的高光度头灯的眩光干扰或骚扰。高光度头灯的一种最重要的安全效益是改善能见距离和在更大距离上检测行人。如果暗化发生在受控汽车的司机有机会看到行人或骑自行车者之前,那么为了适应行人或骑自行车者的高光度头灯的自动暗化就可能否定高光度头灯的安全效益。但是,一旦司机已经识别到行人或骑自行车者并且它们的位置已被确定,高光度头灯就可能出于礼貌而变暗。为方便起见,必须为受控汽车的司机和占有者提供一个开关来促使高光度头灯变暗,以及至少暂时地搁置自动高光度头灯的开启,直至受控汽车已经驶过行人或骑自行者,或直至经过给定的时间周期。应当注意,任何给定的依照本发明的自动汽车外部灯光控制系统都可用来使用环境光线算法、大气状态检测算法、图像传感器障碍物算法、市区运行检测算法、以及行人或骑自行车者检测算法并结合任何对应于这里讨论的方法或系统。另外应当理解,这里描述的所有算法或方法都可被单独持续地采用。有许多变项可以影响特定的实施例以及每种算法或方法的实际实现。